skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nelson, Shad D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The strategic incorporation of low-cost management practices, such as cover crops (CCs), to citrus production in southern Texas could add valuable ecosystem services that increase trees’ resilience to changing climatic conditions. To provide insight into how producers can manage CCs to optimize ecosystem services, we conducted a study in controlled conditions to examine the potential of adding three annual summer CCs species: common buckwheat (Fagopyrum esculentum), sunflower (Helianthus annuus L.), and sunn hemp (Crotalaria juncea L.) as monocultures growing in two representative soil types of the citrus region in Texas, and receiving one of these irrigation volumes based on calculated daily water losses [i.e., evapotranspiration (ET)] corresponding to 100, 75, 50, and 25% field capacity replenishment. Sunflower and sunn hemp produced the highest aboveground dry matter, which was on average 338 and 342% greater than buckwheat. Sunn hemp emerged faster than the other CCs, and mortality was relatively uniform across CCs, but buckwheat exhibited the highest sensitivity to drought and heat distress. Sunn hemp exhibited superior aboveground biomass accumulation, height, and chlorophyll content. All CCs performed similarly in both experimental soils, under native fertility conditions, and without the addition of mineral fertilizers. Irrigation at 75 and 100% ET levels were conducive to enhanced plant growth, which indicates that a minimum of 86.4 mm (75% ET) is required during CCs lifespan, but sunn hemp and sunflower were also capable of tolerating medium (50% ET) drought stress. Overall, our findings suggest that sunflower and sunn hemp exhibited traits desirable for incorporation as CCs to a perennial citrus production system. The primary benefit was the addition of organic matter with minimum management; however, both CCs’ performance was dependent on planting timing, successful early establishment, and favorable environmental conditions. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Potassium (K) deficiency is common in cotton (Gossypium hirsutum L.)-growing areas. This study aims to investigate the effects of different rates of foliar K fertilizer application on three cotton varieties: NG 5711 B3XF (V1), PHY 480 W3FE (V2), and FM 1953GLTP (V3). Potassium fertilizer was dissolved in water and was foliar-applied at 34, 50, and 67 kg ha−1. Cotton plant height (CH) and canopy width (CW) were monitored throughout the growing season. The results showed that foliar K fertilizer application significantly impacted the CH and CW in dry years. Although insignificant, the cotton lint yield increased by 15% and 20% with 34 and 50 kg ha−1 in 2020 and by 9% and 7% with 50 and 67 kg ha−1 in 2021, indicating the potential for improved lint yield with foliar K application in rainfed production systems. Similarly, variety V3 had significantly greater lint and seed yields than V1 in 2020. The average lint yield among the varieties was 32%, and the seed yield was 27% greater in 2020 than in 2021. The cotton fiber color grade was significantly greater at 50 kg ha−1 in 2020 and 67 kg ha−1 in 2021. Cotton variety significantly affected color grade, uniformity, staple length, Col, RD, and Col-b contents in 2020 and 2021. The results suggest that foliar K application can enhance cotton production in rainfed production systems. However, more research is required to quantify varietal and foliar K application rates for improved lint yield and quality. 
    more » « less
  3. Inorganic fertilizers are often used in the United States in golf courses putting green maintenance. We used milled plant biomass on putting greens to test the hypothesis that organic biostimulants used in putting green maintenance can achieve similar results as inorganic fertilizers. Dilapidated putting greens, #4 and #14, with conspicuous patches at the L.E. Ramey Golf Course in Kingsville, TX, were selected for the study. Each green was split in half with one half selected for treatment and the other half maintained as the control and treated with NPK. Milled Medicago sativa L. mixed with milled high auxin-containing plant species in a ratio of 10:1 was used to test the hypothesis. The mixture was applied in the bio-treated section of the two greens while the golf course management continued to apply inorganic fertilizers on the control section of the study greens. Patch count on the greens was conducted once a week utilizing a randomly placed 1 by 1 m quadrant. Also, soil moisture measurement was taken twice a week on the greens to understand soil moisture retention due to the treatments. Patch count indicates that the bio-treated sections grew and filled significantly faster than the sections treated with inorganic fertilizers. Regression analysis of data collected between July 13th and July 27th indicates a strong linear biostimulant/patch growth relationship (R2 = 0.75 and 0.92) on Greens #4 and #14 respectively. Also, soil moisture data indicates significantly higher moisture retention on the putting green sections treated with the biostimulant. 
    more » « less
  4. Water is a vital component for agricultural productivity; however, freshwater supplies are limited and are dwindling worldwide. Water for agriculture is an extreme issue for the southern region of Texas, where water supplies from reservoirs are used for municipal, industrial, and agricultural purposes. Due to intensive and prolonged intermittent droughts in south Texas, freshwater sources can deplete rapidly leaving growers on water restrictions. One potential solution of reducing the amount of water for crops is by applying less water than recommended crop evapotranspiration requires. Deficit irrigation (DI) is the practice of applying lower amounts of water than general crop requirements to increase water use efficiency for economic benefit. Deficit irrigation practice has been shown to be beneficial to some fruit and vegetable crops, but to a lesser extent in south Texas for mild heat pepper plant production. The purpose of this project was to analyze how watering jalapeño and serrano pepper plants at different levels of DI would impact plant growth and fruit yield in a greenhouse study. Deficit irrigation treatments were performed by irrigating pots at increasing the number of days between irrigation events (water application: 2, 4, 8, and 12 days) to create increasing water stress levels to plants. Plant growth and biomass data was collected to determine the impact of increasing deficit irrigation on plant shoot productivity. In both varieties, plant biomass steadily decreased as water application decreased. Serrano peppers grown at both 4d and 2d between water application events produced identical yields, however, increased water stress immediately impacted jalapeño peppers with lower yield. The encouraging results from serrano peppers suggest a potential economic benefit for deficit irrigation water use practices applied to this pepper variety. 
    more » « less
  5. Water is a vital component for agricultural productivity; however, freshwater supplies are limited and are dwindling worldwide. Water for agriculture is an extreme issue for the southern region of Texas, where water supplies from reservoirs are used for municipal, industrial, and agricultural purposes. Due to intensive and prolonged intermittent droughts in south Texas, freshwater sources can deplete rapidly leaving growers on water restrictions. One potential solution of reducing the amount of water for crops is by applying less water than recommended crop evapotranspiration requires. Deficit irrigation (DI) is the practice of applying lower amounts of water than general crop requirements to increase water use efficiency for economic benefit. Deficit irrigation practice has been shown to be beneficial to some fruit and vegetable crops, but to a lesser extent in south Texas for mild heat pepper plant production. The purpose of this project was to analyze how watering jalapeño and serrano pepper plants at different levels of DI would impact plant growth and fruit yield in a greenhouse study. Deficit irrigation treatments were performed by irrigating pots at increasing the number of days between irrigation events (water application: 2, 4, 8, and 12 days) to create increasing water stress levels to plants. Plant growth and biomass data was collected to determine the impact of increasing deficit irrigation on plant shoot productivity. In both varieties, plant biomass steadily decreased as water application decreased. Serrano peppers grown at both 4d and 2d between water application events produced identical yields, however, increased water stress immediately impacted jalapeño peppers with lower yield. The encouraging results from serrano peppers suggest a potential economic benefit for deficit irrigation water use practices applied to this pepper variety. 
    more » « less
  6. Abstract Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [ Odocoileus virginianus ]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990–2019 to 2010–2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010–2019 with 2021–2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights. 
    more » « less